Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((2+x)/(4+x))^cos(x)
Limit of -5-2*x^2+8*x
Limit of (-9+x^2)/(-27+x^3)
Limit of 1+7*x+11*x^2/2
Graphing y =
:
-3/x
Integral of d{x}
:
-3/x
Derivative of
:
-3/x
Identical expressions
- three /x
minus 3 divide by x
minus three divide by x
-3 divide by x
Similar expressions
3/x
Limit of the function
/
-3/x
Limit of the function -3/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/-3 \ lim |---| x->oo\ x /
$$\lim_{x \to \infty}\left(- \frac{3}{x}\right)$$
Limit(-3/x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- \frac{3}{x}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(- \frac{3}{x}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) 3 \frac{1}{x}}{1}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\left(-1\right) 3 \frac{1}{x}}{1}\right) = \lim_{u \to 0^+}\left(- 3 u\right)$$
=
$$- 0 = 0$$
The final answer:
$$\lim_{x \to \infty}\left(- \frac{3}{x}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- \frac{3}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \frac{3}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{3}{x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \frac{3}{x}\right) = -3$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{3}{x}\right) = -3$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{3}{x}\right) = 0$$
More at x→-oo
Rapid solution
[src]
0
$$0$$
Expand and simplify
The graph