Mister Exam

Other calculators:


(5+2*n)/(1+2*n)

Limit of the function (5+2*n)/(1+2*n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /5 + 2*n\
 lim |-------|
n->oo\1 + 2*n/
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right)$$
Limit((5 + 2*n)/(1 + 2*n), n, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right)$$
Let's divide numerator and denominator by n:
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right)$$ =
$$\lim_{n \to \infty}\left(\frac{2 + \frac{5}{n}}{2 + \frac{1}{n}}\right)$$
Do Replacement
$$u = \frac{1}{n}$$
then
$$\lim_{n \to \infty}\left(\frac{2 + \frac{5}{n}}{2 + \frac{1}{n}}\right) = \lim_{u \to 0^+}\left(\frac{5 u + 2}{u + 2}\right)$$
=
$$\frac{0 \cdot 5 + 2}{2} = 1$$

The final answer:
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right) = 1$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty}\left(2 n + 5\right) = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty}\left(2 n + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} \left(2 n + 5\right)}{\frac{d}{d n} \left(2 n + 1\right)}\right)$$
=
$$\lim_{n \to \infty} 1$$
=
$$\lim_{n \to \infty} 1$$
=
$$1$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
1
$$1$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{2 n + 5}{2 n + 1}\right) = 1$$
$$\lim_{n \to 0^-}\left(\frac{2 n + 5}{2 n + 1}\right) = 5$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{2 n + 5}{2 n + 1}\right) = 5$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{2 n + 5}{2 n + 1}\right) = \frac{7}{3}$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{2 n + 5}{2 n + 1}\right) = \frac{7}{3}$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{2 n + 5}{2 n + 1}\right) = 1$$
More at n→-oo
The graph
Limit of the function (5+2*n)/(1+2*n)