Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-tan(2*x)+sin(2*x))/x^3
Limit of 3/n^4
Limit of (1-cos(x)^2)/(x^2*sin(x)^2)
Identical expressions
- three / two
minus 3 divide by 2
minus three divide by two
-3 divide by 2
Similar expressions
3/2
sqrt(1-x)-3/(2+x^(1/3))
x^(-3/(2*x))
Limit of the function
/
-3/2
Limit of the function -3/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-3/2) x->3+
$$\lim_{x \to 3^+} - \frac{3}{2}$$
Limit(-3/2, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-3/2
$$- \frac{3}{2}$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-} - \frac{3}{2} = - \frac{3}{2}$$
More at x→3 from the left
$$\lim_{x \to 3^+} - \frac{3}{2} = - \frac{3}{2}$$
$$\lim_{x \to \infty} - \frac{3}{2} = - \frac{3}{2}$$
More at x→oo
$$\lim_{x \to 0^-} - \frac{3}{2} = - \frac{3}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} - \frac{3}{2} = - \frac{3}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} - \frac{3}{2} = - \frac{3}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} - \frac{3}{2} = - \frac{3}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} - \frac{3}{2} = - \frac{3}{2}$$
More at x→-oo
One‐sided limits
[src]
lim (-3/2) x->3+
$$\lim_{x \to 3^+} - \frac{3}{2}$$
-3/2
$$- \frac{3}{2}$$
= -1.5
lim (-3/2) x->3-
$$\lim_{x \to 3^-} - \frac{3}{2}$$
-3/2
$$- \frac{3}{2}$$
= -1.5
= -1.5
Numerical answer
[src]
-1.5
-1.5
The graph