Mister Exam

Other calculators:


-3/2

Limit of the function -3/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (-3/2)
x->3+      
limx3+32\lim_{x \to 3^+} - \frac{3}{2}
Limit(-3/2, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-1.0-0.8-0.6-0.4-0.21.00.00.20.40.60.8-1.50-1.49
Rapid solution [src]
-3/2
32- \frac{3}{2}
Other limits x→0, -oo, +oo, 1
limx332=32\lim_{x \to 3^-} - \frac{3}{2} = - \frac{3}{2}
More at x→3 from the left
limx3+32=32\lim_{x \to 3^+} - \frac{3}{2} = - \frac{3}{2}
limx32=32\lim_{x \to \infty} - \frac{3}{2} = - \frac{3}{2}
More at x→oo
limx032=32\lim_{x \to 0^-} - \frac{3}{2} = - \frac{3}{2}
More at x→0 from the left
limx0+32=32\lim_{x \to 0^+} - \frac{3}{2} = - \frac{3}{2}
More at x→0 from the right
limx132=32\lim_{x \to 1^-} - \frac{3}{2} = - \frac{3}{2}
More at x→1 from the left
limx1+32=32\lim_{x \to 1^+} - \frac{3}{2} = - \frac{3}{2}
More at x→1 from the right
limx32=32\lim_{x \to -\infty} - \frac{3}{2} = - \frac{3}{2}
More at x→-oo
One‐sided limits [src]
 lim (-3/2)
x->3+      
limx3+32\lim_{x \to 3^+} - \frac{3}{2}
-3/2
32- \frac{3}{2}
= -1.5
 lim (-3/2)
x->3-      
limx332\lim_{x \to 3^-} - \frac{3}{2}
-3/2
32- \frac{3}{2}
= -1.5
= -1.5
Numerical answer [src]
-1.5
-1.5
The graph
Limit of the function -3/2