Mister Exam

Limit of the function -10

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
  lim  (-10)
x->1/2+     
limx12+10\lim_{x \to \frac{1}{2}^+} -10
Limit(-10, x, 1/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-1.0-0.8-0.6-0.4-0.21.00.00.20.40.60.8-10.00-9.99
Other limits x→0, -oo, +oo, 1
limx1210=10\lim_{x \to \frac{1}{2}^-} -10 = -10
More at x→1/2 from the left
limx12+10=10\lim_{x \to \frac{1}{2}^+} -10 = -10
limx10=10\lim_{x \to \infty} -10 = -10
More at x→oo
limx010=10\lim_{x \to 0^-} -10 = -10
More at x→0 from the left
limx0+10=10\lim_{x \to 0^+} -10 = -10
More at x→0 from the right
limx110=10\lim_{x \to 1^-} -10 = -10
More at x→1 from the left
limx1+10=10\lim_{x \to 1^+} -10 = -10
More at x→1 from the right
limx10=10\lim_{x \to -\infty} -10 = -10
More at x→-oo
One‐sided limits [src]
  lim  (-10)
x->1/2+     
limx12+10\lim_{x \to \frac{1}{2}^+} -10
-10
10-10
= -10
  lim  (-10)
x->1/2-     
limx1210\lim_{x \to \frac{1}{2}^-} -10
-10
10-10
= -10
= -10
Rapid solution [src]
-10
10-10
Numerical answer [src]
-10
-10
The graph
Limit of the function -10