$$\lim_{x \to \infty}\left(- \tan{\left(x \right)}\right)$$ $$\lim_{x \to 0^-}\left(- \tan{\left(x \right)}\right) = 0$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(- \tan{\left(x \right)}\right) = 0$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(- \tan{\left(x \right)}\right) = - \tan{\left(1 \right)}$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(- \tan{\left(x \right)}\right) = - \tan{\left(1 \right)}$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(- \tan{\left(x \right)}\right)$$ More at x→-oo