Mister Exam

Other calculators:


-sin(x)+cos(x)

Limit of the function -sin(x)+cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-sin(x) + cos(x))
   pi                   
x->--+                  
   4                    
$$\lim_{x \to \frac{\pi}{4}^+}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
Limit(-sin(x) + cos(x), x, pi/4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
One‐sided limits [src]
 lim  (-sin(x) + cos(x))
   pi                   
x->--+                  
   4                    
$$\lim_{x \to \frac{\pi}{4}^+}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
0
$$0$$
= 4.32978028117747e-17
 lim  (-sin(x) + cos(x))
   pi                   
x->---                  
   4                    
$$\lim_{x \to \frac{\pi}{4}^-}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right)$$
0
$$0$$
= 4.32978028117746e-17
= 4.32978028117746e-17
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{\pi}{4}^-}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = 0$$
More at x→pi/4 from the left
$$\lim_{x \to \frac{\pi}{4}^+}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = - \sin{\left(1 \right)} + \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = - \sin{\left(1 \right)} + \cos{\left(1 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) = \left\langle -2, 2\right\rangle$$
More at x→-oo
Numerical answer [src]
4.32978028117747e-17
4.32978028117747e-17
The graph
Limit of the function -sin(x)+cos(x)