Mister Exam

Other calculators:


-sin(x)

Limit of the function -sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (-sin(x))
x->-oo         
limx(sin(x))\lim_{x \to -\infty}\left(- \sin{\left(x \right)}\right)
Limit(-sin(x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10102-2
Rapid solution [src]
<-1, 1>
1,1\left\langle -1, 1\right\rangle
Other limits x→0, -oo, +oo, 1
limx(sin(x))=1,1\lim_{x \to -\infty}\left(- \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle
limx(sin(x))=1,1\lim_{x \to \infty}\left(- \sin{\left(x \right)}\right) = \left\langle -1, 1\right\rangle
More at x→oo
limx0(sin(x))=0\lim_{x \to 0^-}\left(- \sin{\left(x \right)}\right) = 0
More at x→0 from the left
limx0+(sin(x))=0\lim_{x \to 0^+}\left(- \sin{\left(x \right)}\right) = 0
More at x→0 from the right
limx1(sin(x))=sin(1)\lim_{x \to 1^-}\left(- \sin{\left(x \right)}\right) = - \sin{\left(1 \right)}
More at x→1 from the left
limx1+(sin(x))=sin(1)\lim_{x \to 1^+}\left(- \sin{\left(x \right)}\right) = - \sin{\left(1 \right)}
More at x→1 from the right
The graph
Limit of the function -sin(x)