Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 1-cos(3*x)
Limit of ((6+5*x)/(-1+5*x))^((1+2*x^2)/x)
Limit of (-3*5^(1+x)+5*2^x)/(2*5^x+100*2^x)
Limit of (4^x-9^x)/(4^(1+x)+9^(1+x))
Identical expressions
- seven *x
minus 7 multiply by x
minus seven multiply by x
-7x
Similar expressions
7*x
Limit of the function
/
-7*x
Limit of the function -7*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-7*x) x->5/2+
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right)$$
Limit(-7*x, x, 5/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-35/2
$$- \frac{35}{2}$$
Expand and simplify
One‐sided limits
[src]
lim (-7*x) x->5/2+
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right)$$
-35/2
$$- \frac{35}{2}$$
= -17.5
lim (-7*x) x->5/2-
$$\lim_{x \to \frac{5}{2}^-}\left(- 7 x\right)$$
-35/2
$$- \frac{35}{2}$$
= -17.5
= -17.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{5}{2}^-}\left(- 7 x\right) = - \frac{35}{2}$$
More at x→5/2 from the left
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right) = - \frac{35}{2}$$
$$\lim_{x \to \infty}\left(- 7 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- 7 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 7 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 7 x\right) = -7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 7 x\right) = -7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 7 x\right) = \infty$$
More at x→-oo
Numerical answer
[src]
-17.5
-17.5
The graph