Mister Exam

Other calculators:


-7*x

Limit of the function -7*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
  lim  (-7*x)
x->5/2+      
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right)$$
Limit(-7*x, x, 5/2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-35/2
$$- \frac{35}{2}$$
One‐sided limits [src]
  lim  (-7*x)
x->5/2+      
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right)$$
-35/2
$$- \frac{35}{2}$$
= -17.5
  lim  (-7*x)
x->5/2-      
$$\lim_{x \to \frac{5}{2}^-}\left(- 7 x\right)$$
-35/2
$$- \frac{35}{2}$$
= -17.5
= -17.5
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \frac{5}{2}^-}\left(- 7 x\right) = - \frac{35}{2}$$
More at x→5/2 from the left
$$\lim_{x \to \frac{5}{2}^+}\left(- 7 x\right) = - \frac{35}{2}$$
$$\lim_{x \to \infty}\left(- 7 x\right) = -\infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(- 7 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 7 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 7 x\right) = -7$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 7 x\right) = -7$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 7 x\right) = \infty$$
More at x→-oo
Numerical answer [src]
-17.5
-17.5
The graph
Limit of the function -7*x