Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of (1-3*x^2+2*x^3)/(x^3+2*x+4*x^2)
Limit of 5+3*n
Limit of (1-cos(4*x))/(5*x)
Derivative of
:
-e^(-x)
Integral of d{x}
:
-e^(-x)
Graphing y =
:
-e^(-x)
Identical expressions
-e^(-x)
minus e to the power of ( minus x)
-e(-x)
-e-x
-e^-x
Similar expressions
e^(-x)
(e^(2*x)-e^(-x)-3*x)/x^2
(-2-e^(-x)+3*e^x)*cot(x)
-e^(x)
e^x-x-e^(-x)-2*x/sin(x)
Limit of the function
/
-e^(-x)
Limit of the function -e^(-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x\ lim \-E / x->oo
$$\lim_{x \to \infty}\left(- e^{- x}\right)$$
Limit(-E^(-x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
0
$$0$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- e^{- x}\right) = 0$$
$$\lim_{x \to 0^-}\left(- e^{- x}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{- x}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- e^{- x}\right) = -\infty$$
More at x→-oo
The graph