Mister Exam

Other calculators:


-e^(-x)

Limit of the function -e^(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  -x\
 lim \-E  /
x->oo      
limx(ex)\lim_{x \to \infty}\left(- e^{- x}\right)
Limit(-E^(-x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2000020000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(ex)=0\lim_{x \to \infty}\left(- e^{- x}\right) = 0
limx0(ex)=1\lim_{x \to 0^-}\left(- e^{- x}\right) = -1
More at x→0 from the left
limx0+(ex)=1\lim_{x \to 0^+}\left(- e^{- x}\right) = -1
More at x→0 from the right
limx1(ex)=1e\lim_{x \to 1^-}\left(- e^{- x}\right) = - \frac{1}{e}
More at x→1 from the left
limx1+(ex)=1e\lim_{x \to 1^+}\left(- e^{- x}\right) = - \frac{1}{e}
More at x→1 from the right
limx(ex)=\lim_{x \to -\infty}\left(- e^{- x}\right) = -\infty
More at x→-oo
The graph
Limit of the function -e^(-x)