Mister Exam

Limit of the function -e^(-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  -x\
 lim \-E  /
x->oo      
$$\lim_{x \to \infty}\left(- e^{- x}\right)$$
Limit(-E^(-x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- e^{- x}\right) = 0$$
$$\lim_{x \to 0^-}\left(- e^{- x}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{- x}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{- x}\right) = - \frac{1}{e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- e^{- x}\right) = -\infty$$
More at x→-oo
The graph
Limit of the function -e^(-x)