Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of 2^(-n)*2^(1+n)
Derivative of
:
-e^(-x)
Integral of d{x}
:
-e^(-x)
Graphing y =
:
-e^(-x)
Identical expressions
-e^(-x)
minus e to the power of ( minus x)
-e(-x)
-e-x
-e^-x
Similar expressions
e^(-x)
1/x-e^(-x)
-e^(x)
Limit of the function
/
-e^(-x)
Limit of the function -e^(-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ -x\ lim \-E / x->oo
lim
x
→
∞
(
−
e
−
x
)
\lim_{x \to \infty}\left(- e^{- x}\right)
x
→
∞
lim
(
−
e
−
x
)
Limit(-E^(-x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20000
20000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
−
e
−
x
)
=
0
\lim_{x \to \infty}\left(- e^{- x}\right) = 0
x
→
∞
lim
(
−
e
−
x
)
=
0
lim
x
→
0
−
(
−
e
−
x
)
=
−
1
\lim_{x \to 0^-}\left(- e^{- x}\right) = -1
x
→
0
−
lim
(
−
e
−
x
)
=
−
1
More at x→0 from the left
lim
x
→
0
+
(
−
e
−
x
)
=
−
1
\lim_{x \to 0^+}\left(- e^{- x}\right) = -1
x
→
0
+
lim
(
−
e
−
x
)
=
−
1
More at x→0 from the right
lim
x
→
1
−
(
−
e
−
x
)
=
−
1
e
\lim_{x \to 1^-}\left(- e^{- x}\right) = - \frac{1}{e}
x
→
1
−
lim
(
−
e
−
x
)
=
−
e
1
More at x→1 from the left
lim
x
→
1
+
(
−
e
−
x
)
=
−
1
e
\lim_{x \to 1^+}\left(- e^{- x}\right) = - \frac{1}{e}
x
→
1
+
lim
(
−
e
−
x
)
=
−
e
1
More at x→1 from the right
lim
x
→
−
∞
(
−
e
−
x
)
=
−
∞
\lim_{x \to -\infty}\left(- e^{- x}\right) = -\infty
x
→
−
∞
lim
(
−
e
−
x
)
=
−
∞
More at x→-oo
The graph