$$\lim_{x \to 1^-}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = -3 - \sqrt{2} + \sqrt{5}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = -3 - \sqrt{2} + \sqrt{5}$$
$$\lim_{x \to \infty}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = -\infty$$
More at x→oo$$\lim_{x \to 0^-}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = - \sqrt{2} - 1 + \sqrt{5}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = - \sqrt{2} - 1 + \sqrt{5}$$
More at x→0 from the right$$\lim_{x \to -\infty}\left(- 2 x + \left(- \sqrt{2} + \left(-1 + \sqrt{5}\right)\right)\right) = \infty$$
More at x→-oo