Mister Exam

Other calculators:


(-1+e^(5*x))/x

Limit of the function (-1+e^(5*x))/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      5*x\
     |-1 + E   |
 lim |---------|
x->0+\    x    /
$$\lim_{x \to 0^+}\left(\frac{e^{5 x} - 1}{x}\right)$$
Limit((-1 + E^(5*x))/x, x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 0^+}\left(e^{5 x} - 1\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 0^+} x = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 0^+}\left(\frac{e^{5 x} - 1}{x}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 0^+}\left(\frac{e^{5 x} - 1}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \left(e^{5 x} - 1\right)}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to 0^+}\left(5 e^{5 x}\right)$$
=
$$\lim_{x \to 0^+} 5$$
=
$$\lim_{x \to 0^+} 5$$
=
$$5$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
5
$$5$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{e^{5 x} - 1}{x}\right) = 5$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{5 x} - 1}{x}\right) = 5$$
$$\lim_{x \to \infty}\left(\frac{e^{5 x} - 1}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{e^{5 x} - 1}{x}\right) = -1 + e^{5}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{5 x} - 1}{x}\right) = -1 + e^{5}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{5 x} - 1}{x}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /      5*x\
     |-1 + E   |
 lim |---------|
x->0+\    x    /
$$\lim_{x \to 0^+}\left(\frac{e^{5 x} - 1}{x}\right)$$
5
$$5$$
= 5.0
     /      5*x\
     |-1 + E   |
 lim |---------|
x->0-\    x    /
$$\lim_{x \to 0^-}\left(\frac{e^{5 x} - 1}{x}\right)$$
5
$$5$$
= 5.0
= 5.0
Numerical answer [src]
5.0
5.0
The graph
Limit of the function (-1+e^(5*x))/x