Mister Exam

Other calculators:


-2/7+x^2/7

Limit of the function -2/7+x^2/7

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2\
     |  2   x |
 lim |- - + --|
x->3+\  7   7 /
$$\lim_{x \to 3^+}\left(\frac{x^{2}}{7} - \frac{2}{7}\right)$$
Limit(-2/7 + x^2/7, x, 3)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
1
$$1$$
One‐sided limits [src]
     /       2\
     |  2   x |
 lim |- - + --|
x->3+\  7   7 /
$$\lim_{x \to 3^+}\left(\frac{x^{2}}{7} - \frac{2}{7}\right)$$
1
$$1$$
= 1.0
     /       2\
     |  2   x |
 lim |- - + --|
x->3-\  7   7 /
$$\lim_{x \to 3^-}\left(\frac{x^{2}}{7} - \frac{2}{7}\right)$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 3^-}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = 1$$
More at x→3 from the left
$$\lim_{x \to 3^+}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = 1$$
$$\lim_{x \to \infty}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = - \frac{2}{7}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = - \frac{2}{7}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = - \frac{1}{7}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = - \frac{1}{7}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{7} - \frac{2}{7}\right) = \infty$$
More at x→-oo
Numerical answer [src]
1.0
1.0
The graph
Limit of the function -2/7+x^2/7