Mister Exam

Other calculators:


-1/x^2

You entered:

-1/x^2

What you mean?

Limit of the function -1/x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1 \
 lim |---|
x->2+|  2|
     \ x /
$$\lim_{x \to 2^+}\left(- \frac{1}{x^{2}}\right)$$
Limit(-1/(x^2), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-1/4
$$- \frac{1}{4}$$
One‐sided limits [src]
     /-1 \
 lim |---|
x->2+|  2|
     \ x /
$$\lim_{x \to 2^+}\left(- \frac{1}{x^{2}}\right)$$
-1/4
$$- \frac{1}{4}$$
= -0.25
     /-1 \
 lim |---|
x->2-|  2|
     \ x /
$$\lim_{x \to 2^-}\left(- \frac{1}{x^{2}}\right)$$
-1/4
$$- \frac{1}{4}$$
= -0.25
= -0.25
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(- \frac{1}{x^{2}}\right) = - \frac{1}{4}$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(- \frac{1}{x^{2}}\right) = - \frac{1}{4}$$
$$\lim_{x \to \infty}\left(- \frac{1}{x^{2}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(- \frac{1}{x^{2}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{1}{x^{2}}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \frac{1}{x^{2}}\right) = -1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{1}{x^{2}}\right) = -1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{1}{x^{2}}\right) = 0$$
More at x→-oo
Numerical answer [src]
-0.25
-0.25
The graph
Limit of the function -1/x^2