Mister Exam

Other calculators:


-1/(3*x^3)

Limit of the function -1/(3*x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1  \
 lim |----|
x->0+|   3|
     \3*x /
$$\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right)$$
Limit(-1/(3*x^3), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-oo
$$-\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- \frac{1}{3 x^{3}}\right) = -\infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right) = -\infty$$
$$\lim_{x \to \infty}\left(- \frac{1}{3 x^{3}}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(- \frac{1}{3 x^{3}}\right) = - \frac{1}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \frac{1}{3 x^{3}}\right) = - \frac{1}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \frac{1}{3 x^{3}}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /-1  \
 lim |----|
x->0+|   3|
     \3*x /
$$\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right)$$
-oo
$$-\infty$$
= -1147650.33333333
     /-1  \
 lim |----|
x->0-|   3|
     \3*x /
$$\lim_{x \to 0^-}\left(- \frac{1}{3 x^{3}}\right)$$
oo
$$\infty$$
= 1147650.33333333
= 1147650.33333333
Numerical answer [src]
-1147650.33333333
-1147650.33333333
The graph
Limit of the function -1/(3*x^3)