Mister Exam

Other calculators:


-1/(3*x^3)

Limit of the function -1/(3*x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /-1  \
 lim |----|
x->0+|   3|
     \3*x /
limx0+(13x3)\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right)
Limit(-1/(3*x^3), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-20000001000000
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx0(13x3)=\lim_{x \to 0^-}\left(- \frac{1}{3 x^{3}}\right) = -\infty
More at x→0 from the left
limx0+(13x3)=\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right) = -\infty
limx(13x3)=0\lim_{x \to \infty}\left(- \frac{1}{3 x^{3}}\right) = 0
More at x→oo
limx1(13x3)=13\lim_{x \to 1^-}\left(- \frac{1}{3 x^{3}}\right) = - \frac{1}{3}
More at x→1 from the left
limx1+(13x3)=13\lim_{x \to 1^+}\left(- \frac{1}{3 x^{3}}\right) = - \frac{1}{3}
More at x→1 from the right
limx(13x3)=0\lim_{x \to -\infty}\left(- \frac{1}{3 x^{3}}\right) = 0
More at x→-oo
One‐sided limits [src]
     /-1  \
 lim |----|
x->0+|   3|
     \3*x /
limx0+(13x3)\lim_{x \to 0^+}\left(- \frac{1}{3 x^{3}}\right)
-oo
-\infty
= -1147650.33333333
     /-1  \
 lim |----|
x->0-|   3|
     \3*x /
limx0(13x3)\lim_{x \to 0^-}\left(- \frac{1}{3 x^{3}}\right)
oo
\infty
= 1147650.33333333
= 1147650.33333333
Numerical answer [src]
-1147650.33333333
-1147650.33333333
The graph
Limit of the function -1/(3*x^3)