$$\lim_{x \to \infty}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = - \sinh{\left(1 \right)} + \cosh{\left(1 \right)}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = - \sinh{\left(1 \right)} + \cosh{\left(1 \right)}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- \sinh{\left(x \right)} + \cosh{\left(x \right)}\right) = \infty$$
More at x→-oo