Mister Exam

Other calculators:


(-4+x^2)/(3-sqrt(7+x))

Limit of the function (-4+x^2)/(3-sqrt(7+x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /         2   \
     |   -4 + x    |
 lim |-------------|
x->2+|      _______|
     \3 - \/ 7 + x /
$$\lim_{x \to 2^+}\left(\frac{x^{2} - 4}{3 - \sqrt{x + 7}}\right)$$
Limit((-4 + x^2)/(3 - sqrt(7 + x)), x, 2)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 2^+}\left(x^{2} - 4\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 2^+}\left(3 - \sqrt{x + 7}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 2^+}\left(\frac{x^{2} - 4}{3 - \sqrt{x + 7}}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{\frac{d}{d x} \left(x^{2} - 4\right)}{\frac{d}{d x} \left(3 - \sqrt{x + 7}\right)}\right)$$
=
$$\lim_{x \to 2^+}\left(- 4 x \sqrt{x + 7}\right)$$
=
$$\lim_{x \to 2^+} -24$$
=
$$\lim_{x \to 2^+} -24$$
=
$$-24$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
-24
$$-24$$
One‐sided limits [src]
     /         2   \
     |   -4 + x    |
 lim |-------------|
x->2+|      _______|
     \3 - \/ 7 + x /
$$\lim_{x \to 2^+}\left(\frac{x^{2} - 4}{3 - \sqrt{x + 7}}\right)$$
-24
$$-24$$
= -24.0
     /         2   \
     |   -4 + x    |
 lim |-------------|
x->2-|      _______|
     \3 - \/ 7 + x /
$$\lim_{x \to 2^-}\left(\frac{x^{2} - 4}{3 - \sqrt{x + 7}}\right)$$
-24
$$-24$$
= -24.0
= -24.0
Numerical answer [src]
-24.0
-24.0
The graph
Limit of the function (-4+x^2)/(3-sqrt(7+x))