$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right) = \infty$$ $$\lim_{x \to 0^-}\left(x^{3} + \left(x - 4\right)\right) = -4$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(x^{3} + \left(x - 4\right)\right) = -4$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(x^{3} + \left(x - 4\right)\right) = -2$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(x^{3} + \left(x - 4\right)\right) = -2$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(x^{3} + \left(x - 4\right)\right) = -\infty$$ More at x→-oo