Mister Exam

Other calculators:


-4+x+x^3

Limit of the function -4+x+x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /          3\
 lim \-4 + x + x /
x->oo             
$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right)$$
Limit(-4 + x + x^3, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right)$$ =
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}} - \frac{4}{x^{3}}}{\frac{1}{x^{3}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{1 + \frac{1}{x^{2}} - \frac{4}{x^{3}}}{\frac{1}{x^{3}}}\right) = \lim_{u \to 0^+}\left(\frac{- 4 u^{3} + u^{2} + 1}{u^{3}}\right)$$
=
$$\frac{0^{2} - 4 \cdot 0^{3} + 1}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{3} + \left(x - 4\right)\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{3} + \left(x - 4\right)\right) = -4$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} + \left(x - 4\right)\right) = -4$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{3} + \left(x - 4\right)\right) = -2$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} + \left(x - 4\right)\right) = -2$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} + \left(x - 4\right)\right) = -\infty$$
More at x→-oo
The graph
Limit of the function -4+x+x^3