Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+3*x)^(5/x)
Limit of (-16+x^2+6*x)/(-2-5*x+3*x^2)
Limit of (1+x)^(2/3)-(-1+x)^(2/3)
Limit of e^(1+3*x)*(-1+x)
Graphing y =
:
-4*x
Integral of d{x}
:
-4*x
Derivative of
:
-4*x
Identical expressions
- four *x
minus 4 multiply by x
minus four multiply by x
-4x
Similar expressions
4*x
Limit of the function
/
-4*x
Limit of the function -4*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (-4*x) x->oo
$$\lim_{x \to \infty}\left(- 4 x\right)$$
Limit(-4*x, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(- 4 x\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(- 4 x\right)$$ =
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{4} \frac{1}{x}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty} \frac{1}{\left(-1\right) \frac{1}{4} \frac{1}{x}} = \lim_{u \to 0^+}\left(- \frac{4}{u}\right)$$
=
$$- \frac{4}{0} = -\infty$$
The final answer:
$$\lim_{x \to \infty}\left(- 4 x\right) = -\infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- 4 x\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- 4 x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- 4 x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- 4 x\right) = -4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- 4 x\right) = -4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- 4 x\right) = \infty$$
More at x→-oo
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
The graph