Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (5+x-3*x^2)/(4-x+2*x^2)
Limit of (4-x^2)/(3-x^2)
Limit of (3+2*x)/(1-5*x)
Limit of (1-2*cos(x))/sin(3*x)
Graphing y =
:
-exp(x)
Derivative of
:
-exp(x)
Identical expressions
-exp(x)
minus exponent of (x)
-expx
Similar expressions
(1-exp(x^2)+x*sin(x))/x^4
exp(x)
Limit of the function
/
-exp(x)
Limit of the function -exp(x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ lim \-e / x->oo
$$\lim_{x \to \infty}\left(- e^{x}\right)$$
Limit(-exp(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
-oo
$$-\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- e^{x}\right) = -\infty$$
$$\lim_{x \to 0^-}\left(- e^{x}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- e^{x}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- e^{x}\right) = - e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- e^{x}\right) = - e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- e^{x}\right) = 0$$
More at x→-oo
The graph