Mister Exam

Limit of the function -exp(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /  x\
 lim \-e /
x->oo     
limx(ex)\lim_{x \to \infty}\left(- e^{x}\right)
Limit(-exp(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2500025000
Rapid solution [src]
-oo
-\infty
Other limits x→0, -oo, +oo, 1
limx(ex)=\lim_{x \to \infty}\left(- e^{x}\right) = -\infty
limx0(ex)=1\lim_{x \to 0^-}\left(- e^{x}\right) = -1
More at x→0 from the left
limx0+(ex)=1\lim_{x \to 0^+}\left(- e^{x}\right) = -1
More at x→0 from the right
limx1(ex)=e\lim_{x \to 1^-}\left(- e^{x}\right) = - e
More at x→1 from the left
limx1+(ex)=e\lim_{x \to 1^+}\left(- e^{x}\right) = - e
More at x→1 from the right
limx(ex)=0\lim_{x \to -\infty}\left(- e^{x}\right) = 0
More at x→-oo
The graph
Limit of the function -exp(x)