Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (2+sqrt(x)-sqrt(2))/x
Limit of -8+(1/5)^x
Limit of (-1+cos(2*x))/(3*x*sin(x))
Limit of (-2*n^2+4*n+7*n^3)/(5+2*n^3)
Identical expressions
log(zero . five *x)
logarithm of (0.5 multiply by x)
logarithm of (zero . five multiply by x)
log(0.5x)
log0.5x
Limit of the function
/
log(0.5*x)
Limit of the function log(0.5*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/x\ lim log|-| x->oo \2/
lim
x
→
∞
log
(
x
2
)
\lim_{x \to \infty} \log{\left(\frac{x}{2} \right)}
x
→
∞
lim
lo
g
(
2
x
)
Limit(log(x/2), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
log
(
x
2
)
=
∞
\lim_{x \to \infty} \log{\left(\frac{x}{2} \right)} = \infty
x
→
∞
lim
lo
g
(
2
x
)
=
∞
lim
x
→
0
−
log
(
x
2
)
=
−
∞
\lim_{x \to 0^-} \log{\left(\frac{x}{2} \right)} = -\infty
x
→
0
−
lim
lo
g
(
2
x
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
log
(
x
2
)
=
−
∞
\lim_{x \to 0^+} \log{\left(\frac{x}{2} \right)} = -\infty
x
→
0
+
lim
lo
g
(
2
x
)
=
−
∞
More at x→0 from the right
lim
x
→
1
−
log
(
x
2
)
=
−
log
(
2
)
\lim_{x \to 1^-} \log{\left(\frac{x}{2} \right)} = - \log{\left(2 \right)}
x
→
1
−
lim
lo
g
(
2
x
)
=
−
lo
g
(
2
)
More at x→1 from the left
lim
x
→
1
+
log
(
x
2
)
=
−
log
(
2
)
\lim_{x \to 1^+} \log{\left(\frac{x}{2} \right)} = - \log{\left(2 \right)}
x
→
1
+
lim
lo
g
(
2
x
)
=
−
lo
g
(
2
)
More at x→1 from the right
lim
x
→
−
∞
log
(
x
2
)
=
∞
\lim_{x \to -\infty} \log{\left(\frac{x}{2} \right)} = \infty
x
→
−
∞
lim
lo
g
(
2
x
)
=
∞
More at x→-oo
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
The graph