Mister Exam

Other calculators:


log(x)^3/x

Limit of the function log(x)^3/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   3   \
     |log (x)|
 lim |-------|
x->oo\   x   /
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{3}}{x}\right)$$
Limit(log(x)^3/x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty} \log{\left(x \right)}^{3} = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{3}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x \right)}^{3}}{\frac{d}{d x} x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{3 \log{\left(x \right)}^{2}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \log{\left(x \right)}^{2}}{\frac{d}{d x} \frac{x}{3}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{6 \log{\left(x \right)}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{6 \log{\left(x \right)}}{x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 2 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = -\infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x \right)}^{3}}{x}\right) = 0$$
More at x→-oo
The graph
Limit of the function log(x)^3/x