$$\lim_{x \to 0^-} \log{\left(x \right)}^{\sin{\left(x \right)}} = 1$$
More at x→0 from the left$$\lim_{x \to 0^+} \log{\left(x \right)}^{\sin{\left(x \right)}} = 1$$
$$\lim_{x \to \infty} \log{\left(x \right)}^{\sin{\left(x \right)}} = \infty^{\left\langle -1, 1\right\rangle}$$
More at x→oo$$\lim_{x \to 1^-} \log{\left(x \right)}^{\sin{\left(x \right)}} = 0$$
More at x→1 from the left$$\lim_{x \to 1^+} \log{\left(x \right)}^{\sin{\left(x \right)}} = 0$$
More at x→1 from the right$$\lim_{x \to -\infty} \log{\left(x \right)}^{\sin{\left(x \right)}} = \infty^{\left\langle -1, 1\right\rangle}$$
More at x→-oo