$$\lim_{n \to \infty} \log{\left(1 + \frac{1}{n} \right)} = 0$$ $$\lim_{n \to 0^-} \log{\left(1 + \frac{1}{n} \right)} = \infty$$ More at n→0 from the left $$\lim_{n \to 0^+} \log{\left(1 + \frac{1}{n} \right)} = \infty$$ More at n→0 from the right $$\lim_{n \to 1^-} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}$$ More at n→1 from the left $$\lim_{n \to 1^+} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}$$ More at n→1 from the right $$\lim_{n \to -\infty} \log{\left(1 + \frac{1}{n} \right)} = 0$$ More at n→-oo