Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (1+x^2)^(3/2)/(1+2*x)
Sum of series
:
log(1+1/n)
Identical expressions
log(one + one /n)
logarithm of (1 plus 1 divide by n)
logarithm of (one plus one divide by n)
log1+1/n
log(1+1 divide by n)
Similar expressions
x*log(1+1/(n*x))
log(1-1/n)
n*log(1+1/(n*x))
Limit of the function
/
log(1+1/n)
Limit of the function log(1+1/n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 1\ lim log|1 + -| n->oo \ n/
lim
n
→
∞
log
(
1
+
1
n
)
\lim_{n \to \infty} \log{\left(1 + \frac{1}{n} \right)}
n
→
∞
lim
lo
g
(
1
+
n
1
)
Limit(log(1 + 1/n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
5
-5
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits n→0, -oo, +oo, 1
lim
n
→
∞
log
(
1
+
1
n
)
=
0
\lim_{n \to \infty} \log{\left(1 + \frac{1}{n} \right)} = 0
n
→
∞
lim
lo
g
(
1
+
n
1
)
=
0
lim
n
→
0
−
log
(
1
+
1
n
)
=
∞
\lim_{n \to 0^-} \log{\left(1 + \frac{1}{n} \right)} = \infty
n
→
0
−
lim
lo
g
(
1
+
n
1
)
=
∞
More at n→0 from the left
lim
n
→
0
+
log
(
1
+
1
n
)
=
∞
\lim_{n \to 0^+} \log{\left(1 + \frac{1}{n} \right)} = \infty
n
→
0
+
lim
lo
g
(
1
+
n
1
)
=
∞
More at n→0 from the right
lim
n
→
1
−
log
(
1
+
1
n
)
=
log
(
2
)
\lim_{n \to 1^-} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}
n
→
1
−
lim
lo
g
(
1
+
n
1
)
=
lo
g
(
2
)
More at n→1 from the left
lim
n
→
1
+
log
(
1
+
1
n
)
=
log
(
2
)
\lim_{n \to 1^+} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}
n
→
1
+
lim
lo
g
(
1
+
n
1
)
=
lo
g
(
2
)
More at n→1 from the right
lim
n
→
−
∞
log
(
1
+
1
n
)
=
0
\lim_{n \to -\infty} \log{\left(1 + \frac{1}{n} \right)} = 0
n
→
−
∞
lim
lo
g
(
1
+
n
1
)
=
0
More at n→-oo
The graph