Mister Exam

Other calculators:


log(1+1/n)

Limit of the function log(1+1/n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        /    1\
 lim log|1 + -|
n->oo   \    n/
limnlog(1+1n)\lim_{n \to \infty} \log{\left(1 + \frac{1}{n} \right)}
Limit(log(1 + 1/n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10105-5
Rapid solution [src]
0
00
Other limits n→0, -oo, +oo, 1
limnlog(1+1n)=0\lim_{n \to \infty} \log{\left(1 + \frac{1}{n} \right)} = 0
limn0log(1+1n)=\lim_{n \to 0^-} \log{\left(1 + \frac{1}{n} \right)} = \infty
More at n→0 from the left
limn0+log(1+1n)=\lim_{n \to 0^+} \log{\left(1 + \frac{1}{n} \right)} = \infty
More at n→0 from the right
limn1log(1+1n)=log(2)\lim_{n \to 1^-} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}
More at n→1 from the left
limn1+log(1+1n)=log(2)\lim_{n \to 1^+} \log{\left(1 + \frac{1}{n} \right)} = \log{\left(2 \right)}
More at n→1 from the right
limnlog(1+1n)=0\lim_{n \to -\infty} \log{\left(1 + \frac{1}{n} \right)} = 0
More at n→-oo
The graph
Limit of the function log(1+1/n)