Mister Exam

Autres calculateurs:


log(-1+x)/cot(pi*x)

Vous avez saisi:

log(-1+x)/cot(pi*x)

Que vouliez-vous dire ?

Limite d'une fonction log(-1+x)/cot(pi*x)

lorsque
v

Pour les points finis:

Graphique:

de à

Fonction définie par morceaux:

Solution

You have entered [src]
     /log(-1 + x)\
 lim |-----------|
x->oo\ cot(pi*x) /
$$\lim_{x \to \infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
Limit(log(-1 + x)/cot(pi*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
     /log(-1 + x)\
 lim |-----------|
x->oo\ cot(pi*x) /
$$\lim_{x \to \infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
More at x→-oo
Graphique
Limite d'une fonction log(-1+x)/cot(pi*x)