$$\lim_{x \to \infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
$$\lim_{x \to 0^-}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right) = 0$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\log{\left(x - 1 \right)}}{\cot{\left(\pi x \right)}}\right)$$
More at x→-oo