We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 1^+} \log{\left(x \right)} = 0$$
and limit for the denominator is
$$\lim_{x \to 1^+} \frac{1}{\cot{\left(5 \pi x \right)}} = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 1^+}\left(\log{\left(x \right)} \cot{\left(5 \pi x \right)}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 1^+}\left(\log{\left(x \right)} \cot{\left(5 \pi x \right)}\right)$$
=
$$\lim_{x \to 1^+}\left(\frac{\frac{d}{d x} \log{\left(x \right)}}{\frac{d}{d x} \frac{1}{\cot{\left(5 \pi x \right)}}}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(5 \pi x \right)}}{5 \pi x \left(- \cot^{2}{\left(5 \pi x \right)} - 1\right)}\right)$$
=
$$\lim_{x \to 1^+}\left(- \frac{\cot^{2}{\left(5 \pi x \right)}}{5 \pi x \left(- \cot^{2}{\left(5 \pi x \right)} - 1\right)}\right)$$
=
$$\frac{1}{5 \pi}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)