Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (e^x-e^2)/(-2+x)
Limit of (-asin(x)+2*x)/(2*x+atan(x))
Limit of 2^(-n)*2^(1+n)
Limit of (-6+x^2-x)/(9+x^2-6*x)
Derivative of
:
log(cos(2*x))
Graphing y =
:
log(cos(2*x))
Identical expressions
log(cos(two *x))
logarithm of ( co sinus of e of (2 multiply by x))
logarithm of ( co sinus of e of (two multiply by x))
log(cos(2x))
logcos2x
Limit of the function
/
log(cos(2*x))
Limit of the function log(cos(2*x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim log(cos(2*x)) x->oo
lim
x
→
∞
log
(
cos
(
2
x
)
)
\lim_{x \to \infty} \log{\left(\cos{\left(2 x \right)} \right)}
x
→
∞
lim
lo
g
(
cos
(
2
x
)
)
Limit(log(cos(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
2.5
-2.5
Plot the graph
Rapid solution
[src]
log(<-1, 1>)
log
(
⟨
−
1
,
1
⟩
)
\log{\left(\left\langle -1, 1\right\rangle \right)}
lo
g
(
⟨
−
1
,
1
⟩
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
log
(
cos
(
2
x
)
)
=
log
(
⟨
−
1
,
1
⟩
)
\lim_{x \to \infty} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}
x
→
∞
lim
lo
g
(
cos
(
2
x
)
)
=
lo
g
(
⟨
−
1
,
1
⟩
)
lim
x
→
0
−
log
(
cos
(
2
x
)
)
=
0
\lim_{x \to 0^-} \log{\left(\cos{\left(2 x \right)} \right)} = 0
x
→
0
−
lim
lo
g
(
cos
(
2
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
log
(
cos
(
2
x
)
)
=
0
\lim_{x \to 0^+} \log{\left(\cos{\left(2 x \right)} \right)} = 0
x
→
0
+
lim
lo
g
(
cos
(
2
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
log
(
cos
(
2
x
)
)
=
log
(
−
cos
(
2
)
)
+
i
π
\lim_{x \to 1^-} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(- \cos{\left(2 \right)} \right)} + i \pi
x
→
1
−
lim
lo
g
(
cos
(
2
x
)
)
=
lo
g
(
−
cos
(
2
)
)
+
iπ
More at x→1 from the left
lim
x
→
1
+
log
(
cos
(
2
x
)
)
=
log
(
−
cos
(
2
)
)
+
i
π
\lim_{x \to 1^+} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(- \cos{\left(2 \right)} \right)} + i \pi
x
→
1
+
lim
lo
g
(
cos
(
2
x
)
)
=
lo
g
(
−
cos
(
2
)
)
+
iπ
More at x→1 from the right
lim
x
→
−
∞
log
(
cos
(
2
x
)
)
=
log
(
⟨
−
1
,
1
⟩
)
\lim_{x \to -\infty} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}
x
→
−
∞
lim
lo
g
(
cos
(
2
x
)
)
=
lo
g
(
⟨
−
1
,
1
⟩
)
More at x→-oo
The graph