Mister Exam

Other calculators:


log(cos(2*x))

Limit of the function log(cos(2*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim log(cos(2*x))
x->oo             
$$\lim_{x \to \infty} \log{\left(\cos{\left(2 x \right)} \right)}$$
Limit(log(cos(2*x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
log(<-1, 1>)
$$\log{\left(\left\langle -1, 1\right\rangle \right)}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
$$\lim_{x \to 0^-} \log{\left(\cos{\left(2 x \right)} \right)} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \log{\left(\cos{\left(2 x \right)} \right)} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(- \cos{\left(2 \right)} \right)} + i \pi$$
More at x→1 from the left
$$\lim_{x \to 1^+} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(- \cos{\left(2 \right)} \right)} + i \pi$$
More at x→1 from the right
$$\lim_{x \to -\infty} \log{\left(\cos{\left(2 x \right)} \right)} = \log{\left(\left\langle -1, 1\right\rangle \right)}$$
More at x→-oo
The graph
Limit of the function log(cos(2*x))