$$\lim_{x \to 0^-}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \infty$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = 0$$
More at x→oo$$\lim_{x \to 1^-}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \frac{1 + e^{2}}{4 e}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \frac{1 + e^{2}}{4 e}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = 0$$
More at x→-oo