Mister Exam

Other calculators:


cosh(1/x)/(x*(1+x^2))

Limit of the function cosh(1/x)/(x*(1+x^2))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     /1\  \
     | cosh|-|  |
     |     \x/  |
 lim |----------|
x->0+|  /     2\|
     \x*\1 + x //
$$\lim_{x \to 0^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right)$$
Limit(cosh(1/x)/((x*(1 + x^2))), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
One‐sided limits [src]
     /     /1\  \
     | cosh|-|  |
     |     \x/  |
 lim |----------|
x->0+|  /     2\|
     \x*\1 + x //
$$\lim_{x \to 0^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right)$$
oo
$$\infty$$
= -0.0213505581546171
     /     /1\  \
     | cosh|-|  |
     |     \x/  |
 lim |----------|
x->0-|  /     2\|
     \x*\1 + x //
$$\lim_{x \to 0^-}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right)$$
-oo
$$-\infty$$
= 0.0213505581546171
= 0.0213505581546171
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \infty$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = 0$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \frac{1 + e^{2}}{4 e}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = \frac{1 + e^{2}}{4 e}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{\cosh{\left(\frac{1}{x} \right)}}{x \left(x^{2} + 1\right)}\right) = 0$$
More at x→-oo
Numerical answer [src]
-0.0213505581546171
-0.0213505581546171
The graph
Limit of the function cosh(1/x)/(x*(1+x^2))