Mister Exam

Other calculators:


4^x/x

Limit of the function 4^x/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / x\
     |4 |
 lim |--|
x->oo\x /
limx(4xx)\lim_{x \to \infty}\left(\frac{4^{x}}{x}\right)
Limit(4^x/x, x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
limx4x=\lim_{x \to \infty} 4^{x} = \infty
and limit for the denominator is
limxx=\lim_{x \to \infty} x = \infty
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx(4xx)\lim_{x \to \infty}\left(\frac{4^{x}}{x}\right)
=
limx(ddx4xddxx)\lim_{x \to \infty}\left(\frac{\frac{d}{d x} 4^{x}}{\frac{d}{d x} x}\right)
=
limx(24xlog(2))\lim_{x \to \infty}\left(2 \cdot 4^{x} \log{\left(2 \right)}\right)
=
limx(24xlog(2))\lim_{x \to \infty}\left(2 \cdot 4^{x} \log{\left(2 \right)}\right)
=
\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010200000-100000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(4xx)=\lim_{x \to \infty}\left(\frac{4^{x}}{x}\right) = \infty
limx0(4xx)=\lim_{x \to 0^-}\left(\frac{4^{x}}{x}\right) = -\infty
More at x→0 from the left
limx0+(4xx)=\lim_{x \to 0^+}\left(\frac{4^{x}}{x}\right) = \infty
More at x→0 from the right
limx1(4xx)=4\lim_{x \to 1^-}\left(\frac{4^{x}}{x}\right) = 4
More at x→1 from the left
limx1+(4xx)=4\lim_{x \to 1^+}\left(\frac{4^{x}}{x}\right) = 4
More at x→1 from the right
limx(4xx)=0\lim_{x \to -\infty}\left(\frac{4^{x}}{x}\right) = 0
More at x→-oo
The graph
Limit of the function 4^x/x