Mister Exam

Other calculators:


4*sqrt(x)

Limit of the function 4*sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /    ___\
 lim  \4*\/ x /
x->16+         
$$\lim_{x \to 16^+}\left(4 \sqrt{x}\right)$$
Limit(4*sqrt(x), x, 16)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
16
$$16$$
One‐sided limits [src]
      /    ___\
 lim  \4*\/ x /
x->16+         
$$\lim_{x \to 16^+}\left(4 \sqrt{x}\right)$$
16
$$16$$
= 16.0
      /    ___\
 lim  \4*\/ x /
x->16-         
$$\lim_{x \to 16^-}\left(4 \sqrt{x}\right)$$
16
$$16$$
= 16.0
= 16.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 16^-}\left(4 \sqrt{x}\right) = 16$$
More at x→16 from the left
$$\lim_{x \to 16^+}\left(4 \sqrt{x}\right) = 16$$
$$\lim_{x \to \infty}\left(4 \sqrt{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(4 \sqrt{x}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 \sqrt{x}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(4 \sqrt{x}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 \sqrt{x}\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(4 \sqrt{x}\right) = \infty i$$
More at x→-oo
Numerical answer [src]
16.0
16.0
The graph
Limit of the function 4*sqrt(x)