Mister Exam

Other calculators:


4*sin(3*x)

Limit of the function 4*sin(3*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (4*sin(3*x))
x->0+            
$$\lim_{x \to 0^+}\left(4 \sin{\left(3 x \right)}\right)$$
Limit(4*sin(3*x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(4 \sin{\left(3 x \right)}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 \sin{\left(3 x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(4 \sin{\left(3 x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→oo
$$\lim_{x \to 1^-}\left(4 \sin{\left(3 x \right)}\right) = 4 \sin{\left(3 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 \sin{\left(3 x \right)}\right) = 4 \sin{\left(3 \right)}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(4 \sin{\left(3 x \right)}\right) = \left\langle -4, 4\right\rangle$$
More at x→-oo
One‐sided limits [src]
 lim (4*sin(3*x))
x->0+            
$$\lim_{x \to 0^+}\left(4 \sin{\left(3 x \right)}\right)$$
0
$$0$$
= 8.53202382582053e-30
 lim (4*sin(3*x))
x->0-            
$$\lim_{x \to 0^-}\left(4 \sin{\left(3 x \right)}\right)$$
0
$$0$$
= -8.53202382582053e-30
= -8.53202382582053e-30
Rapid solution [src]
0
$$0$$
Numerical answer [src]
8.53202382582053e-30
8.53202382582053e-30
The graph
Limit of the function 4*sin(3*x)