Mister Exam

Other calculators:


4*e^x

Limit of the function 4*e^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   x\
 lim \4*E /
x->4+      
$$\lim_{x \to 4^+}\left(4 e^{x}\right)$$
Limit(4*E^x, x, 4)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     /   x\
 lim \4*E /
x->4+      
$$\lim_{x \to 4^+}\left(4 e^{x}\right)$$
   4
4*e 
$$4 e^{4}$$
= 218.392600132577
     /   x\
 lim \4*E /
x->4-      
$$\lim_{x \to 4^-}\left(4 e^{x}\right)$$
   4
4*e 
$$4 e^{4}$$
= 218.392600132577
= 218.392600132577
Rapid solution [src]
   4
4*e 
$$4 e^{4}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 4^-}\left(4 e^{x}\right) = 4 e^{4}$$
More at x→4 from the left
$$\lim_{x \to 4^+}\left(4 e^{x}\right) = 4 e^{4}$$
$$\lim_{x \to \infty}\left(4 e^{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(4 e^{x}\right) = 4$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(4 e^{x}\right) = 4$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(4 e^{x}\right) = 4 e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(4 e^{x}\right) = 4 e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(4 e^{x}\right) = 0$$
More at x→-oo
Numerical answer [src]
218.392600132577
218.392600132577
The graph
Limit of the function 4*e^x