We have indeterminateness of type
-oo/oo,
i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(4 - x^{3}\right) = -\infty$$
and limit for the denominator is
$$\lim_{x \to \infty} x^{2} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{4 - x^{3}}{x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(4 - x^{3}\right)}{\frac{d}{d x} x^{2}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{3 x}{2}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{3 x}{2}\right)$$
=
$$-\infty$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)