Mister Exam

Other calculators:


5/(-9+x+x^4)

Limit of the function 5/(-9+x+x^4)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     5     \
 lim |-----------|
x->oo|          4|
     \-9 + x + x /
$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right)$$
Limit(5/(-9 + x + x^4), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right)$$
Let's divide numerator and denominator by x^4:
$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{5 \frac{1}{x^{4}}}{1 + \frac{1}{x^{3}} - \frac{9}{x^{4}}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{5 \frac{1}{x^{4}}}{1 + \frac{1}{x^{3}} - \frac{9}{x^{4}}}\right) = \lim_{u \to 0^+}\left(\frac{5 u^{4}}{- 9 u^{4} + u^{3} + 1}\right)$$
=
$$\frac{5 \cdot 0^{4}}{0^{3} - 9 \cdot 0^{4} + 1} = 0$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = 0$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{9}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{9}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{7}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{7}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = 0$$
More at x→-oo
The graph
Limit of the function 5/(-9+x+x^4)