$$\lim_{x \to \infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{9}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{9}$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{7}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = - \frac{5}{7}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{5}{x^{4} + \left(x - 9\right)}\right) = 0$$
More at x→-oo