Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((-4+3*x)/(2+3*x))^(1+x)/3
Limit of (-16+2^x)/(-1+5*sqrt(x)*(5-x))
Limit of (-14+x^2-5*x)/(-6+x+2*x^2)
Limit of (3+x^2+4*x)/(1+x^3)
Identical expressions
factorial(n)^(one /n)
factorial(n) to the power of (1 divide by n)
factorial(n) to the power of (one divide by n)
factorial(n)(1/n)
factorialn1/n
factorialn^1/n
factorial(n)^(1 divide by n)
Limit of the function
/
factorial(n)^(1/n)
Limit of the function factorial(n)^(1/n)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
n ____ lim \/ n! n->oo
$$\lim_{n \to \infty} n!^{1 \cdot \frac{1}{n}}$$
Limit(factorial(n)^(1/n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} n!^{1 \cdot \frac{1}{n}} = \infty$$
$$\lim_{n \to 0^-} n!^{1 \cdot \frac{1}{n}} = e^{- \gamma}$$
More at n→0 from the left
$$\lim_{n \to 0^+} n!^{1 \cdot \frac{1}{n}} = e^{- \gamma}$$
More at n→0 from the right
$$\lim_{n \to 1^-} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→1 from the left
$$\lim_{n \to 1^+} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→1 from the right
$$\lim_{n \to -\infty} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→-oo