Mister Exam

Other calculators:

Limit of the function factorial(n)^(1/n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     n ____
 lim \/ n! 
n->oo      
$$\lim_{n \to \infty} n!^{1 \cdot \frac{1}{n}}$$
Limit(factorial(n)^(1/n), n, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Rapid solution [src]
oo
$$\infty$$
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty} n!^{1 \cdot \frac{1}{n}} = \infty$$
$$\lim_{n \to 0^-} n!^{1 \cdot \frac{1}{n}} = e^{- \gamma}$$
More at n→0 from the left
$$\lim_{n \to 0^+} n!^{1 \cdot \frac{1}{n}} = e^{- \gamma}$$
More at n→0 from the right
$$\lim_{n \to 1^-} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→1 from the left
$$\lim_{n \to 1^+} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→1 from the right
$$\lim_{n \to -\infty} n!^{1 \cdot \frac{1}{n}} = 1$$
More at n→-oo