Mister Exam

Limit of the function f*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (f*x)
x->a+     
$$\lim_{x \to a^+}\left(f x\right)$$
Limit(f*x, x, a)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to a^-}\left(f x\right) = a f$$
More at x→a from the left
$$\lim_{x \to a^+}\left(f x\right) = a f$$
$$\lim_{x \to \infty}\left(f x\right) = \infty \operatorname{sign}{\left(f \right)}$$
More at x→oo
$$\lim_{x \to 0^-}\left(f x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(f x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(f x\right) = f$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(f x\right) = f$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(f x\right) = - \infty \operatorname{sign}{\left(f \right)}$$
More at x→-oo
Rapid solution [src]
a*f
$$a f$$
One‐sided limits [src]
 lim (f*x)
x->a+     
$$\lim_{x \to a^+}\left(f x\right)$$
a*f
$$a f$$
 lim (f*x)
x->a-     
$$\lim_{x \to a^-}\left(f x\right)$$
a*f
$$a f$$
a*f