Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (3+2*n)/|-1+2*n|
Limit of (x^2-3*x)/(-8+x^2)
Limit of (1+5*x)*(-1+5*x)
Limit of (5-3*x^2-2*x)/(3+x+x^2)
Derivative of
:
f*x
Identical expressions
f*x
f multiply by x
fx
Limit of the function
/
f*x
Limit of the function f*x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (f*x) x->a+
$$\lim_{x \to a^+}\left(f x\right)$$
Limit(f*x, x, a)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to a^-}\left(f x\right) = a f$$
More at x→a from the left
$$\lim_{x \to a^+}\left(f x\right) = a f$$
$$\lim_{x \to \infty}\left(f x\right) = \infty \operatorname{sign}{\left(f \right)}$$
More at x→oo
$$\lim_{x \to 0^-}\left(f x\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(f x\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(f x\right) = f$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(f x\right) = f$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(f x\right) = - \infty \operatorname{sign}{\left(f \right)}$$
More at x→-oo
Rapid solution
[src]
a*f
$$a f$$
Expand and simplify
One‐sided limits
[src]
lim (f*x) x->a+
$$\lim_{x \to a^+}\left(f x\right)$$
a*f
$$a f$$
lim (f*x) x->a-
$$\lim_{x \to a^-}\left(f x\right)$$
a*f
$$a f$$
a*f