Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 2^(-x)*factorial(x)
Limit of n2*(5/2+n/2)
Limit of ((-4+3*x)/(2+3*x))^(2*x)
Limit of (2+n)^2*(1+2*n)/(n^2*(3+2*n))
Graphing y =
:
exp(2-x)/(2-x)
Identical expressions
exp(two -x)/(two -x)
exponent of (2 minus x) divide by (2 minus x)
exponent of (two minus x) divide by (two minus x)
exp2-x/2-x
exp(2-x) divide by (2-x)
Similar expressions
exp(2-x)/(2+x)
exp(2+x)/(2-x)
Limit of the function
/
exp(2-x)/(2-x)
Limit of the function exp(2-x)/(2-x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2 - x\ |e | lim |------| x->oo\2 - x /
lim
x
→
∞
(
e
2
−
x
2
−
x
)
\lim_{x \to \infty}\left(\frac{e^{2 - x}}{2 - x}\right)
x
→
∞
lim
(
2
−
x
e
2
−
x
)
Limit(exp(2 - x)/(2 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
20000
-10000
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
e
2
−
x
2
−
x
)
=
0
\lim_{x \to \infty}\left(\frac{e^{2 - x}}{2 - x}\right) = 0
x
→
∞
lim
(
2
−
x
e
2
−
x
)
=
0
lim
x
→
0
−
(
e
2
−
x
2
−
x
)
=
e
2
2
\lim_{x \to 0^-}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}
x
→
0
−
lim
(
2
−
x
e
2
−
x
)
=
2
e
2
More at x→0 from the left
lim
x
→
0
+
(
e
2
−
x
2
−
x
)
=
e
2
2
\lim_{x \to 0^+}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}
x
→
0
+
lim
(
2
−
x
e
2
−
x
)
=
2
e
2
More at x→0 from the right
lim
x
→
1
−
(
e
2
−
x
2
−
x
)
=
e
\lim_{x \to 1^-}\left(\frac{e^{2 - x}}{2 - x}\right) = e
x
→
1
−
lim
(
2
−
x
e
2
−
x
)
=
e
More at x→1 from the left
lim
x
→
1
+
(
e
2
−
x
2
−
x
)
=
e
\lim_{x \to 1^+}\left(\frac{e^{2 - x}}{2 - x}\right) = e
x
→
1
+
lim
(
2
−
x
e
2
−
x
)
=
e
More at x→1 from the right
lim
x
→
−
∞
(
e
2
−
x
2
−
x
)
=
∞
\lim_{x \to -\infty}\left(\frac{e^{2 - x}}{2 - x}\right) = \infty
x
→
−
∞
lim
(
2
−
x
e
2
−
x
)
=
∞
More at x→-oo
The graph