Mister Exam

Other calculators:


exp(2-x)/(2-x)

Limit of the function exp(2-x)/(2-x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2 - x\
     |e     |
 lim |------|
x->oo\2 - x /
limx(e2x2x)\lim_{x \to \infty}\left(\frac{e^{2 - x}}{2 - x}\right)
Limit(exp(2 - x)/(2 - x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-101020000-10000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(e2x2x)=0\lim_{x \to \infty}\left(\frac{e^{2 - x}}{2 - x}\right) = 0
limx0(e2x2x)=e22\lim_{x \to 0^-}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}
More at x→0 from the left
limx0+(e2x2x)=e22\lim_{x \to 0^+}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}
More at x→0 from the right
limx1(e2x2x)=e\lim_{x \to 1^-}\left(\frac{e^{2 - x}}{2 - x}\right) = e
More at x→1 from the left
limx1+(e2x2x)=e\lim_{x \to 1^+}\left(\frac{e^{2 - x}}{2 - x}\right) = e
More at x→1 from the right
limx(e2x2x)=\lim_{x \to -\infty}\left(\frac{e^{2 - x}}{2 - x}\right) = \infty
More at x→-oo
The graph
Limit of the function exp(2-x)/(2-x)