$$\lim_{x \to \infty}\left(\frac{e^{2 - x}}{2 - x}\right) = 0$$ $$\lim_{x \to 0^-}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}$$ More at x→0 from the left $$\lim_{x \to 0^+}\left(\frac{e^{2 - x}}{2 - x}\right) = \frac{e^{2}}{2}$$ More at x→0 from the right $$\lim_{x \to 1^-}\left(\frac{e^{2 - x}}{2 - x}\right) = e$$ More at x→1 from the left $$\lim_{x \to 1^+}\left(\frac{e^{2 - x}}{2 - x}\right) = e$$ More at x→1 from the right $$\lim_{x \to -\infty}\left(\frac{e^{2 - x}}{2 - x}\right) = \infty$$ More at x→-oo