$$\lim_{x \to 0^-} \cot{\left(3 x \right)} = \infty$$
More at x→0 from the left$$\lim_{x \to 0^+} \cot{\left(3 x \right)} = \infty$$
$$\lim_{x \to \infty} \cot{\left(3 x \right)} = \cot{\left(\infty \right)}$$
More at x→oo$$\lim_{x \to 1^-} \cot{\left(3 x \right)} = \frac{1}{\tan{\left(3 \right)}}$$
More at x→1 from the left$$\lim_{x \to 1^+} \cot{\left(3 x \right)} = \frac{1}{\tan{\left(3 \right)}}$$
More at x→1 from the right$$\lim_{x \to -\infty} \cot{\left(3 x \right)} = - \cot{\left(\infty \right)}$$
More at x→-oo