Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of 7-2*x
Limit of (4+x^2-5*x)/(-16+x^2)
Limit of (2-7*x+3*x^2)/(2-5*x+2*x^2)
Limit of ((1+x^2)/(-1+x^2))^(x^2)
Integral of d{x}
:
exp(-x^2)/x
Identical expressions
exp(-x^ two)/x
exponent of ( minus x squared ) divide by x
exponent of ( minus x to the power of two) divide by x
exp(-x2)/x
exp-x2/x
exp(-x²)/x
exp(-x to the power of 2)/x
exp-x^2/x
exp(-x^2) divide by x
Similar expressions
exp(x^2)/x
Limit of the function
/
exp(-x^2)/x
Limit of the function exp(-x^2)/x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 2\ | -x | |e | lim |----| x->-oo\ x /
lim
x
→
−
∞
(
e
−
x
2
x
)
\lim_{x \to -\infty}\left(\frac{e^{- x^{2}}}{x}\right)
x
→
−
∞
lim
(
x
e
−
x
2
)
Limit(exp(-x^2)/x, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Rapid solution
[src]
0
0
0
0
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
(
e
−
x
2
x
)
=
0
\lim_{x \to -\infty}\left(\frac{e^{- x^{2}}}{x}\right) = 0
x
→
−
∞
lim
(
x
e
−
x
2
)
=
0
lim
x
→
∞
(
e
−
x
2
x
)
=
0
\lim_{x \to \infty}\left(\frac{e^{- x^{2}}}{x}\right) = 0
x
→
∞
lim
(
x
e
−
x
2
)
=
0
More at x→oo
lim
x
→
0
−
(
e
−
x
2
x
)
=
−
∞
\lim_{x \to 0^-}\left(\frac{e^{- x^{2}}}{x}\right) = -\infty
x
→
0
−
lim
(
x
e
−
x
2
)
=
−
∞
More at x→0 from the left
lim
x
→
0
+
(
e
−
x
2
x
)
=
∞
\lim_{x \to 0^+}\left(\frac{e^{- x^{2}}}{x}\right) = \infty
x
→
0
+
lim
(
x
e
−
x
2
)
=
∞
More at x→0 from the right
lim
x
→
1
−
(
e
−
x
2
x
)
=
e
−
1
\lim_{x \to 1^-}\left(\frac{e^{- x^{2}}}{x}\right) = e^{-1}
x
→
1
−
lim
(
x
e
−
x
2
)
=
e
−
1
More at x→1 from the left
lim
x
→
1
+
(
e
−
x
2
x
)
=
e
−
1
\lim_{x \to 1^+}\left(\frac{e^{- x^{2}}}{x}\right) = e^{-1}
x
→
1
+
lim
(
x
e
−
x
2
)
=
e
−
1
More at x→1 from the right
The graph