Mister Exam

Other calculators

Integral of exp(-x^2)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo        
  /        
 |         
 |     2   
 |   -x    
 |  e      
 |  ---- dx
 |   x     
 |         
/          
0          
0ex2xdx\int\limits_{0}^{\infty} \frac{e^{- x^{2}}}{x}\, dx
Integral(exp(-x^2)/x, (x, 0, oo))
Detail solution
  1. Let u=x2u = - x^{2}.

    Then let du=2xdxdu = - 2 x dx and substitute du2\frac{du}{2}:

    eu2udu\int \frac{e^{u}}{2 u}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      euudu=euudu2\int \frac{e^{u}}{u}\, du = \frac{\int \frac{e^{u}}{u}\, du}{2}

        EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)

      So, the result is: Ei(u)2\frac{\operatorname{Ei}{\left(u \right)}}{2}

    Now substitute uu back in:

    Ei(x2)2\frac{\operatorname{Ei}{\left(- x^{2} \right)}}{2}

  2. Add the constant of integration:

    Ei(x2)2+constant\frac{\operatorname{Ei}{\left(- x^{2} \right)}}{2}+ \mathrm{constant}


The answer is:

Ei(x2)2+constant\frac{\operatorname{Ei}{\left(- x^{2} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                     
 |                      
 |    2                 
 |  -x             /  2\
 | e             Ei\-x /
 | ---- dx = C + -------
 |  x               2   
 |                      
/                       
ex2xdx=C+Ei(x2)2\int \frac{e^{- x^{2}}}{x}\, dx = C + \frac{\operatorname{Ei}{\left(- x^{2} \right)}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.02-0.02
The answer [src]
oo
\infty
=
=
oo
\infty
oo

    Use the examples entering the upper and lower limits of integration.