Integral of exp(-x^2)/x dx
The solution
Detail solution
-
Let u=−x2.
Then let du=−2xdx and substitute 2du:
∫2ueudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫ueudu=2∫ueudu
EiRule(a=1, b=0, context=exp(_u)/_u, symbol=_u)
So, the result is: 2Ei(u)
Now substitute u back in:
2Ei(−x2)
-
Add the constant of integration:
2Ei(−x2)+constant
The answer is:
2Ei(−x2)+constant
The answer (Indefinite)
[src]
/
|
| 2
| -x / 2\
| e Ei\-x /
| ---- dx = C + -------
| x 2
|
/
∫xe−x2dx=C+2Ei(−x2)
The graph
Use the examples entering the upper and lower limits of integration.