Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of -2+x^3+6*x
Limit of ((-2+x)/x)^(2*x)
Limit of (-2+x)*log(-2+x)
Limit of -6+x^2+5*x
Identical expressions
eleven / two
11 divide by 2
eleven divide by two
Limit of the function
/
11/2
Limit of the function 11/2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (11/2) x->2+
$$\lim_{x \to 2^+} \frac{11}{2}$$
Limit(11/2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
One‐sided limits
[src]
lim (11/2) x->2+
$$\lim_{x \to 2^+} \frac{11}{2}$$
11/2
$$\frac{11}{2}$$
= 5.5
lim (11/2) x->2-
$$\lim_{x \to 2^-} \frac{11}{2}$$
11/2
$$\frac{11}{2}$$
= 5.5
= 5.5
Rapid solution
[src]
11/2
$$\frac{11}{2}$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \frac{11}{2} = \frac{11}{2}$$
More at x→2 from the left
$$\lim_{x \to 2^+} \frac{11}{2} = \frac{11}{2}$$
$$\lim_{x \to \infty} \frac{11}{2} = \frac{11}{2}$$
More at x→oo
$$\lim_{x \to 0^-} \frac{11}{2} = \frac{11}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{11}{2} = \frac{11}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{11}{2} = \frac{11}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{11}{2} = \frac{11}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{11}{2} = \frac{11}{2}$$
More at x→-oo
Numerical answer
[src]
5.5
5.5
The graph