Mister Exam

Other calculators:


11/2

Limit of the function 11/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (11/2)
x->2+      
$$\lim_{x \to 2^+} \frac{11}{2}$$
Limit(11/2, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
 lim (11/2)
x->2+      
$$\lim_{x \to 2^+} \frac{11}{2}$$
11/2
$$\frac{11}{2}$$
= 5.5
 lim (11/2)
x->2-      
$$\lim_{x \to 2^-} \frac{11}{2}$$
11/2
$$\frac{11}{2}$$
= 5.5
= 5.5
Rapid solution [src]
11/2
$$\frac{11}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-} \frac{11}{2} = \frac{11}{2}$$
More at x→2 from the left
$$\lim_{x \to 2^+} \frac{11}{2} = \frac{11}{2}$$
$$\lim_{x \to \infty} \frac{11}{2} = \frac{11}{2}$$
More at x→oo
$$\lim_{x \to 0^-} \frac{11}{2} = \frac{11}{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \frac{11}{2} = \frac{11}{2}$$
More at x→0 from the right
$$\lim_{x \to 1^-} \frac{11}{2} = \frac{11}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} \frac{11}{2} = \frac{11}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty} \frac{11}{2} = \frac{11}{2}$$
More at x→-oo
Numerical answer [src]
5.5
5.5
The graph
Limit of the function 11/2