Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (-2*x^2+4*x^3+5*x)/(3*x^2+7*x)
Limit of x*2^x*3^(-x)
Limit of (4+x^2)/(-6+2*x)
Limit of (sqrt(5+x)-sqrt(10))/(-15+x^2-2*x)
Derivative of
:
8*x^3
Integral of d{x}
:
8*x^3
Identical expressions
eight *x^ three
8 multiply by x cubed
eight multiply by x to the power of three
8*x3
8*x³
8*x to the power of 3
8x^3
8x3
Similar expressions
(-1+8*x^3)/(-1/4+x^2)
(-1+8*x^3)/(1-5*x+6*x^2)
(1-5*x+6*x^2)/(-1+8*x^3)
(-5*x^2+6*x)/(-2*x+8*x^3)
Limit of the function
/
8*x^3
Limit of the function 8*x^3
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ 3\ lim \8*x / x->-1+
lim
x
→
−
1
+
(
8
x
3
)
\lim_{x \to -1^+}\left(8 x^{3}\right)
x
→
−
1
+
lim
(
8
x
3
)
Limit(8*x^3, x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-2.0
-1.5
-1.0
-0.5
2.0
0.0
0.5
1.0
1.5
-100
100
Plot the graph
Rapid solution
[src]
-8
−
8
-8
−
8
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
1
−
(
8
x
3
)
=
−
8
\lim_{x \to -1^-}\left(8 x^{3}\right) = -8
x
→
−
1
−
lim
(
8
x
3
)
=
−
8
More at x→-1 from the left
lim
x
→
−
1
+
(
8
x
3
)
=
−
8
\lim_{x \to -1^+}\left(8 x^{3}\right) = -8
x
→
−
1
+
lim
(
8
x
3
)
=
−
8
lim
x
→
∞
(
8
x
3
)
=
∞
\lim_{x \to \infty}\left(8 x^{3}\right) = \infty
x
→
∞
lim
(
8
x
3
)
=
∞
More at x→oo
lim
x
→
0
−
(
8
x
3
)
=
0
\lim_{x \to 0^-}\left(8 x^{3}\right) = 0
x
→
0
−
lim
(
8
x
3
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
8
x
3
)
=
0
\lim_{x \to 0^+}\left(8 x^{3}\right) = 0
x
→
0
+
lim
(
8
x
3
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
8
x
3
)
=
8
\lim_{x \to 1^-}\left(8 x^{3}\right) = 8
x
→
1
−
lim
(
8
x
3
)
=
8
More at x→1 from the left
lim
x
→
1
+
(
8
x
3
)
=
8
\lim_{x \to 1^+}\left(8 x^{3}\right) = 8
x
→
1
+
lim
(
8
x
3
)
=
8
More at x→1 from the right
lim
x
→
−
∞
(
8
x
3
)
=
−
∞
\lim_{x \to -\infty}\left(8 x^{3}\right) = -\infty
x
→
−
∞
lim
(
8
x
3
)
=
−
∞
More at x→-oo
One‐sided limits
[src]
/ 3\ lim \8*x / x->-1+
lim
x
→
−
1
+
(
8
x
3
)
\lim_{x \to -1^+}\left(8 x^{3}\right)
x
→
−
1
+
lim
(
8
x
3
)
-8
−
8
-8
−
8
= -8
/ 3\ lim \8*x / x->-1-
lim
x
→
−
1
−
(
8
x
3
)
\lim_{x \to -1^-}\left(8 x^{3}\right)
x
→
−
1
−
lim
(
8
x
3
)
-8
−
8
-8
−
8
= -8
= -8
Numerical answer
[src]
-8.0
-8.0
The graph