Mister Exam

Other calculators:


e^(x^2)*x^3

Limit of the function e^(x^2)*x^3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / / 2\   \
     | \x /  3|
 lim \e    *x /
x->oo          
$$\lim_{x \to \infty}\left(x^{3} e^{x^{2}}\right)$$
Limit(E^(x^2)*x^3, x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(x^{3} e^{x^{2}}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x^{3} e^{x^{2}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(x^{3} e^{x^{2}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(x^{3} e^{x^{2}}\right) = e$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(x^{3} e^{x^{2}}\right) = e$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(x^{3} e^{x^{2}}\right) = -\infty$$
More at x→-oo
The graph
Limit of the function e^(x^2)*x^3