Mister Exam

Other calculators:


e^x*cos(x)

Limit of the function e^x*cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / x       \
 lim  \E *cos(x)/
x->-oo           
limx(excos(x))\lim_{x \to -\infty}\left(e^{x} \cos{\left(x \right)}\right)
Limit(E^x*cos(x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2000020000
Rapid solution [src]
0
00
Other limits x→0, -oo, +oo, 1
limx(excos(x))=0\lim_{x \to -\infty}\left(e^{x} \cos{\left(x \right)}\right) = 0
limx(excos(x))=,\lim_{x \to \infty}\left(e^{x} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx0(excos(x))=1\lim_{x \to 0^-}\left(e^{x} \cos{\left(x \right)}\right) = 1
More at x→0 from the left
limx0+(excos(x))=1\lim_{x \to 0^+}\left(e^{x} \cos{\left(x \right)}\right) = 1
More at x→0 from the right
limx1(excos(x))=ecos(1)\lim_{x \to 1^-}\left(e^{x} \cos{\left(x \right)}\right) = e \cos{\left(1 \right)}
More at x→1 from the left
limx1+(excos(x))=ecos(1)\lim_{x \to 1^+}\left(e^{x} \cos{\left(x \right)}\right) = e \cos{\left(1 \right)}
More at x→1 from the right
The graph
Limit of the function e^x*cos(x)