Mister Exam

Other calculators:


e^x*cos(x)

Limit of the function e^x*cos(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / x       \
 lim  \E *cos(x)/
x->-oo           
$$\lim_{x \to -\infty}\left(e^{x} \cos{\left(x \right)}\right)$$
Limit(E^x*cos(x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(e^{x} \cos{\left(x \right)}\right) = 0$$
$$\lim_{x \to \infty}\left(e^{x} \cos{\left(x \right)}\right) = \left\langle -\infty, \infty\right\rangle$$
More at x→oo
$$\lim_{x \to 0^-}\left(e^{x} \cos{\left(x \right)}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{x} \cos{\left(x \right)}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{x} \cos{\left(x \right)}\right) = e \cos{\left(1 \right)}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{x} \cos{\left(x \right)}\right) = e \cos{\left(1 \right)}$$
More at x→1 from the right
The graph
Limit of the function e^x*cos(x)