Mister Exam

Other calculators:


e^x/(1+x)

Limit of the function e^x/(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   x \
      |  E  |
 lim  |-----|
x->-1+\1 + x/
$$\lim_{x \to -1^+}\left(\frac{e^{x}}{x + 1}\right)$$
Limit(E^x/(1 + x), x, -1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -1^-}\left(\frac{e^{x}}{x + 1}\right) = \infty$$
More at x→-1 from the left
$$\lim_{x \to -1^+}\left(\frac{e^{x}}{x + 1}\right) = \infty$$
$$\lim_{x \to \infty}\left(\frac{e^{x}}{x + 1}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{e^{x}}{x + 1}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{x}}{x + 1}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{e^{x}}{x + 1}\right) = \frac{e}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{x}}{x + 1}\right) = \frac{e}{2}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{x}}{x + 1}\right) = 0$$
More at x→-oo
One‐sided limits [src]
      /   x \
      |  E  |
 lim  |-----|
x->-1+\1 + x/
$$\lim_{x \to -1^+}\left(\frac{e^{x}}{x + 1}\right)$$
oo
$$\infty$$
= 55.9188958954214
      /   x \
      |  E  |
 lim  |-----|
x->-1-\1 + x/
$$\lim_{x \to -1^-}\left(\frac{e^{x}}{x + 1}\right)$$
-oo
$$-\infty$$
= -55.1831316349482
= -55.1831316349482
Rapid solution [src]
oo
$$\infty$$
Numerical answer [src]
55.9188958954214
55.9188958954214
The graph
Limit of the function e^x/(1+x)