Mister Exam

Other calculators:


e^(2*x)

Limit of the function e^(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      2*x
 lim E   
x->1+    
$$\lim_{x \to 1^+} e^{2 x}$$
Limit(E^(2*x), x, 1)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      2*x
 lim E   
x->1+    
$$\lim_{x \to 1^+} e^{2 x}$$
 2
e 
$$e^{2}$$
= 7.38905609893065
      2*x
 lim E   
x->1-    
$$\lim_{x \to 1^-} e^{2 x}$$
 2
e 
$$e^{2}$$
= 7.38905609893065
= 7.38905609893065
Rapid solution [src]
 2
e 
$$e^{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 1^-} e^{2 x} = e^{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{2 x} = e^{2}$$
$$\lim_{x \to \infty} e^{2 x} = \infty$$
More at x→oo
$$\lim_{x \to 0^-} e^{2 x} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{2 x} = 1$$
More at x→0 from the right
$$\lim_{x \to -\infty} e^{2 x} = 0$$
More at x→-oo
Numerical answer [src]
7.38905609893065
7.38905609893065
The graph
Limit of the function e^(2*x)