Mister Exam

Other calculators:


e^3*x^2

Limit of the function e^3*x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      / 3  2\
 lim  \E *x /
x->-oo       
$$\lim_{x \to -\infty}\left(e^{3} x^{2}\right)$$
Limit(E^3*x^2, x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(e^{3} x^{2}\right)$$
Let's divide numerator and denominator by x^2:
$$\lim_{x \to -\infty}\left(e^{3} x^{2}\right)$$ =
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{x^{2}} e^{-3}}$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty} \frac{1}{\frac{1}{x^{2}} e^{-3}} = \lim_{u \to 0^+}\left(\frac{e^{3}}{u^{2}}\right)$$
=
$$\frac{e^{3}}{0} = \infty$$

The final answer:
$$\lim_{x \to -\infty}\left(e^{3} x^{2}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(e^{3} x^{2}\right) = \infty$$
$$\lim_{x \to \infty}\left(e^{3} x^{2}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(e^{3} x^{2}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(e^{3} x^{2}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(e^{3} x^{2}\right) = e^{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(e^{3} x^{2}\right) = e^{3}$$
More at x→1 from the right
The graph
Limit of the function e^3*x^2