Mister Exam

Other calculators:


e^tan(x)

Limit of the function e^tan(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      tan(x)
 lim E      
x->0+       
$$\lim_{x \to 0^+} e^{\tan{\left(x \right)}}$$
Limit(E^tan(x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
      tan(x)
 lim E      
x->0+       
$$\lim_{x \to 0^+} e^{\tan{\left(x \right)}}$$
1
$$1$$
= 1.0
      tan(x)
 lim E      
x->0-       
$$\lim_{x \to 0^-} e^{\tan{\left(x \right)}}$$
1
$$1$$
= 1.0
= 1.0
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} e^{\tan{\left(x \right)}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{\tan{\left(x \right)}} = 1$$
$$\lim_{x \to \infty} e^{\tan{\left(x \right)}}$$
More at x→oo
$$\lim_{x \to 1^-} e^{\tan{\left(x \right)}} = e^{\tan{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{\tan{\left(x \right)}} = e^{\tan{\left(1 \right)}}$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{\tan{\left(x \right)}}$$
More at x→-oo
Rapid solution [src]
1
$$1$$
Numerical answer [src]
1.0
1.0
The graph
Limit of the function e^tan(x)