$$\lim_{x \to 0^-} e^{\tan{\left(x \right)}} = 1$$ More at x→0 from the left $$\lim_{x \to 0^+} e^{\tan{\left(x \right)}} = 1$$ $$\lim_{x \to \infty} e^{\tan{\left(x \right)}}$$ More at x→oo $$\lim_{x \to 1^-} e^{\tan{\left(x \right)}} = e^{\tan{\left(1 \right)}}$$ More at x→1 from the left $$\lim_{x \to 1^+} e^{\tan{\left(x \right)}} = e^{\tan{\left(1 \right)}}$$ More at x→1 from the right $$\lim_{x \to -\infty} e^{\tan{\left(x \right)}}$$ More at x→-oo