Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (2+x^2+3*x)/(2+2*x^2+5*x)
Limit of (-51+x^2-14*x)/(-21+x^2-4*x)
Limit of -sec(x)+tan(x)
Limit of tan(3*x)/(4*x)
Integral of d{x}
:
e^(sqrt(x))
Identical expressions
e^(sqrt(x))
e to the power of ( square root of (x))
e^(√(x))
e(sqrt(x))
esqrtx
e^sqrtx
Limit of the function
/
e^(sqrt(x))
Limit of the function e^(sqrt(x))
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
___ \/ x lim E x->oo
$$\lim_{x \to \infty} e^{\sqrt{x}}$$
Limit(E^(sqrt(x)), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Plot the graph
Rapid solution
[src]
oo
$$\infty$$
Expand and simplify
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} e^{\sqrt{x}} = \infty$$
$$\lim_{x \to 0^-} e^{\sqrt{x}} = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+} e^{\sqrt{x}} = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-} e^{\sqrt{x}} = e$$
More at x→1 from the left
$$\lim_{x \to 1^+} e^{\sqrt{x}} = e$$
More at x→1 from the right
$$\lim_{x \to -\infty} e^{\sqrt{x}}$$
More at x→-oo
The graph