Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of ((4+3*x)/(-2+3*x))^(-7+5*x)
Limit of (5-4*x+3*x^2)/(1-x+2*x^2)
Limit of ((3+2*x)/(7+5*x))^(1+x)
Limit of (1-log(7*x))^(7*x)
Derivative of
:
e^(4*x)
Integral of d{x}
:
e^(4*x)
Equation
:
e^(4*x)
Identical expressions
e^(four *x)
e to the power of (4 multiply by x)
e to the power of (four multiply by x)
e(4*x)
e4*x
e^(4x)
e(4x)
e4x
e^4x
Similar expressions
(-1+e^(4*x))/sin(2*x)
e^(4*x)/(2-5*x-2*x^2)
e^(4*x)*(-1-x+3*x^2)
Limit of the function
/
e^(4*x)
Limit of the function e^(4*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
4*x lim E x->oo
lim
x
→
∞
e
4
x
\lim_{x \to \infty} e^{4 x}
x
→
∞
lim
e
4
x
Limit(E^(4*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
0
250000000000000000
Plot the graph
Rapid solution
[src]
oo
∞
\infty
∞
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
e
4
x
=
∞
\lim_{x \to \infty} e^{4 x} = \infty
x
→
∞
lim
e
4
x
=
∞
lim
x
→
0
−
e
4
x
=
1
\lim_{x \to 0^-} e^{4 x} = 1
x
→
0
−
lim
e
4
x
=
1
More at x→0 from the left
lim
x
→
0
+
e
4
x
=
1
\lim_{x \to 0^+} e^{4 x} = 1
x
→
0
+
lim
e
4
x
=
1
More at x→0 from the right
lim
x
→
1
−
e
4
x
=
e
4
\lim_{x \to 1^-} e^{4 x} = e^{4}
x
→
1
−
lim
e
4
x
=
e
4
More at x→1 from the left
lim
x
→
1
+
e
4
x
=
e
4
\lim_{x \to 1^+} e^{4 x} = e^{4}
x
→
1
+
lim
e
4
x
=
e
4
More at x→1 from the right
lim
x
→
−
∞
e
4
x
=
0
\lim_{x \to -\infty} e^{4 x} = 0
x
→
−
∞
lim
e
4
x
=
0
More at x→-oo
The graph