Mister Exam

Other calculators:


e^(4*x)

Limit of the function e^(4*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      4*x
 lim E   
x->oo    
limxe4x\lim_{x \to \infty} e^{4 x}
Limit(E^(4*x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100250000000000000000
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limxe4x=\lim_{x \to \infty} e^{4 x} = \infty
limx0e4x=1\lim_{x \to 0^-} e^{4 x} = 1
More at x→0 from the left
limx0+e4x=1\lim_{x \to 0^+} e^{4 x} = 1
More at x→0 from the right
limx1e4x=e4\lim_{x \to 1^-} e^{4 x} = e^{4}
More at x→1 from the left
limx1+e4x=e4\lim_{x \to 1^+} e^{4 x} = e^{4}
More at x→1 from the right
limxe4x=0\lim_{x \to -\infty} e^{4 x} = 0
More at x→-oo
The graph
Limit of the function e^(4*x)