Mister Exam

Other calculators:


cot(x)*log(x)*sin(x)

Limit of the function cot(x)*log(x)*sin(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim (cot(x)*log(x)*sin(x))
x->0+                      
limx0+(log(x)cot(x)sin(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
Limit((cot(x)*log(x))*sin(x), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+(log(x)sin(x))=0\lim_{x \to 0^+}\left(\log{\left(x \right)} \sin{\left(x \right)}\right) = 0
and limit for the denominator is
limx0+1cot(x)=0\lim_{x \to 0^+} \frac{1}{\cot{\left(x \right)}} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(log(x)cot(x)sin(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
=
Let's transform the function under the limit a few
limx0+(log(x)sin(x)cot(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \sin{\left(x \right)} \cot{\left(x \right)}\right)
=
limx0+(ddxlog(x)sin(x)ddx1cot(x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \log{\left(x \right)} \sin{\left(x \right)}}{\frac{d}{d x} \frac{1}{\cot{\left(x \right)}}}\right)
=
limx0+(log(x)cos(x)+sin(x)x1+1cot2(x))\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}}{1 + \frac{1}{\cot^{2}{\left(x \right)}}}\right)
=
limx0+(log(x)cos(x)+sin(x)x1+1cot2(x))\lim_{x \to 0^+}\left(\frac{\log{\left(x \right)} \cos{\left(x \right)} + \frac{\sin{\left(x \right)}}{x}}{1 + \frac{1}{\cot^{2}{\left(x \right)}}}\right)
=
-\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-1010
Rapid solution [src]
-oo
-\infty
One‐sided limits [src]
 lim (cot(x)*log(x)*sin(x))
x->0+                      
limx0+(log(x)cot(x)sin(x))\lim_{x \to 0^+}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
-oo
-\infty
= -8.86491367718932
 lim (cot(x)*log(x)*sin(x))
x->0-                      
limx0(log(x)cot(x)sin(x))\lim_{x \to 0^-}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
-oo
-\infty
= (-8.85935629963627 + 3.13348227607372j)
= (-8.85935629963627 + 3.13348227607372j)
Other limits x→0, -oo, +oo, 1
limx0(log(x)cot(x)sin(x))=\lim_{x \to 0^-}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right) = -\infty
More at x→0 from the left
limx0+(log(x)cot(x)sin(x))=\lim_{x \to 0^+}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right) = -\infty
limx(log(x)cot(x)sin(x))\lim_{x \to \infty}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
More at x→oo
limx1(log(x)cot(x)sin(x))=0\lim_{x \to 1^-}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right) = 0
More at x→1 from the left
limx1+(log(x)cot(x)sin(x))=0\lim_{x \to 1^+}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right) = 0
More at x→1 from the right
limx(log(x)cot(x)sin(x))\lim_{x \to -\infty}\left(\log{\left(x \right)} \cot{\left(x \right)} \sin{\left(x \right)}\right)
More at x→-oo
Numerical answer [src]
-8.86491367718932
-8.86491367718932
The graph
Limit of the function cot(x)*log(x)*sin(x)